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Abstract. We inhoduce a new algorithm for domain growth in disordered sysfems at low 
temperatures based on the lendency for such a system w freere into metastable slates. We apply 
the algorithm IO the d = 1 random-bond king d e l  for a variety of bond disbibutions. The 
analytical forms we obtain for the two-point wrrelation function and aulomrrelation function 
agree well with numerical simulations of ule model. These forms are not the same as those Of 
the pure king model with Glauber dynamics. 

l. Introduction 

The properties of domain growth in systems quenched from a disordered state to a 
temperature within the ordered phase have been extensively investigated [I]. Interest has 
focused on the nature of the growth law for the characteristic scale L ( t )  and on the form of 
the scaling function f ( x )  for the two-point correlation function C(x)  = f ( r / L ( t ) )  = f ( x ) .  
For systems without disorder, it has been shown that L ( t )  - t" where the growth exponent 
n is known both for conserved (n = f )  and non-conserved (n = 4) order parameters [Z, 31. 
The scaling function f ( x ) ,  however, has proved difficult to calculate exactly for physically 
interesting values of d [4] although approximate theories have been developed which 
give reasonable agreement with numerical simulations for scalar [SI and vector [6] (non- 
conserved) order parameters. 

Considerably less progress has been made in the study of disordered systems. Analytical 
results have been limited. Huse and Henley [7] have argued that the characteristic length 
scale grows as L( t )  - (log(t))x where the exponent x is related to the static exponents 
goveming the pinning energy and the domain wall roughening. Numerical simulations 
using Monte Carlo algorithms or cell dynamics are hampered by the freezing of the spins 
in metastable configurations [8,9]. Recent results for the growth law for the characteristic 
length scale using cell dynamics, however, are consistent with the prediction of Huse and 
Henley of the growth law for the characteristic scale L ( t )  for both conserved and non- 
conserved order parameters although it is still not clear whether the asymptotic regime has 
heen reached. 

The scaling functions for the two-point correlation function and autocorrelation function 
have not been calculated analytically and the approximate theories mentioned above have 
not proved adaptable to disordered systems. It has been suggested, however, that although 
the introduction of disorder roughens the domain walls, on a sufficiently coarse grained 
scale the walls appear smooth such that domain growth is driven by the curvature of the 
walls on large scales [IO]. Simulation results for the two-point correlation function and 
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autocorrelation function of the d = 2 random-bond king model (RBIM) appear to confirm 
this prediction (Bray and Humayun, [8]). The scaling function found, expressed in terms 
of the length scale L(t), appears to be. the same as for pure systems. 

In view of the difficulties associated both with analytical work and numerical simulation 
of phase ordering in disordered systems it would seem useful to consider a model which 
can be solved exactly. In this paper we present a new algorithm for domain growth 
which exploits the tendency of the system to freeze into metastable configurations at low 
temperatures. Although in principle the algorithm is applicable to any disordered system, 
it proves impractical to implement other than in one dimension. 

A disordered system of particular interest in d = 1 is the RBIM. Unlike the king model 
in a random field, the disorder does not destabilize the ground state and so a transition 
to an ordered state occurs, albeit at zero temperature. We have used our algorithm to 
simulate this model and hence determined the form of the two-point correlation function 
and autocorrelation function for a variety of bond distributions. In certain cases we have also 
been able to deduce these functions analytically, and in these cases the fit to the numerical 
data is excellent. Our solution satisfies the dynamic scaling hypothesis, which states that the 
domain morphology is characterised by a single time-dependent length scale. Interestingly, 
the results obtained are not the same as the corresponding quantities in the d = 1 Glauber 
model, i.e. the same system without disorder [4]. 

The time dependence of the characteristic length scale L(c) can be deduced rather 
simply for these models. It is convenient, however, to express the scaling functions in 
terms of LO, the average domain scale, so the correlation functions we calculate are of the 
form C - f (r/Lo). In th is  form the scaling functions exhibit a degree of universality. 
For example, the function f ( x )  is the same for all unbounded distributions of bonds. By 
contrast, the dependence of LO on t depends on the details of the distribution. This will be 
discussed in more detail in section 6. 

The rest of this paper is organized as follows. A general definition of the model 
is presented in section 2. A more detailed explanation of how the model is applied 
numerically to the RBIM is given in section 3. When the bond distribution is unbounded 
the calculation of the scaling function f ( x )  for the two-point correlation function becomes 
rather straightforward. Section 4 contains a calculation of this quantity along with a similar 
but more involved calculation for a uniform distribution of bonds. In section 5 we discuss 
the form of the autocorrelation function for an unbounded distribution of bonds. The results 
are discussed and summarized in section 6. 

R E Blundell and A .I Bray 

2. The model 

Consider the evolution of order in a system with some form of random disorder, and a 
discrete spin symmetry, quenched from the high-temperature phase. Initially the ordering 
occurs rapidly but the system soon becomes trapped in a metastable configuration. If the 
tempcrature is very low, then on the time scale of the initial ordering the system will remain 
in this state virtually indefinitely. On a longer time scale, however, excitations cause the 
system to move to new metastable states with lower energies and hence the system moves 
towards equilibrium. 

The idea of our algorithm is to exploit two properties of domain ordering in random 
systems at low temperature: firstly the tendency of the system to spend most of its time in 
metastable states and secondly the increasing differentiation, as T -+ 0, of the time scales 
associated with the occurrence of processes with different excitation energies. 

The time scale on which an excitation away from a metastable state occurs is determined 
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by both its energy cost and a factor associated with the number of paths through phase space 
by which the target state can be reached from the metastable configuration in which the 
system is frozen. In the limit of very low temperature the energy cost becomes the dominant 
factor, so that excitations with lower energy costs occur far more frequently, and hence 
sooner, than those with higher ones. Most excitations have no effect because the system 
quickly relaxes back to the original state. For certain excitations, however, relaxation to 
another metastable configuration with a lower energy is possible and hence their presence 
determines the dynamics of the system. 

The path the system follows through phase space is determined, therefore, by the energy 
of the excitations required to move it from one metastable configuration to another. At 
sufficiently low temperature the configuration to which the system moves is the one that 
requires excitation with the smallest energy cost. The essential idea of our algorithm is that 
for small T the time scales of the various excitations become increasingly differentiated 
and as T 3 0 only the fastest processes need be consided. One can therefore determine, 
in principle at least, the states through which the system passes by calculating the energy 
barriers involved in moving the system between metastable states and choosing as the new 
state the one with the smallest energy barrier. In practice, for most systems the number 
of possible excitations leading to new metastable states is too large to cope with. For a 
one-dimensional system, however, the situation is much simpler and it is possible in certain 
cases to implement the algorithm numerically and to deduce the late-time domain structure 
analytically. 

We believe that at sufficiently low temperature our algorithm is equivalent to 
Monte Carlo dynamics and should produce the same spin configurations. We note, however, 
that a given step of the algorithm corresponds to a varying number of steps of the underlying 
Monte Carlo dynamics, so we cannot sensibly define time as the number of iterations. 
Instead, we use the average domain size, simply the reciprocal of the domain wall density 
in d = 1, to define a characteristic length with which to scale the correlation function 
etc. The form of the growth law for the characteristic scale, expressed in terms of the 
equivalent Monte Carlo time, is discussed in section 6. Note that an actual Monte Carlo 
simulation is not practical because of the enormous time scales required to grow domains 
of size comparable to those produced by the new algorithm. 

3. The random-bond king model in one dimension 

For the d = I RBlM we are able to calculate the correlation function exactly for an unbounded 
or a uniform distribution of bonds. Before we present these calculations, however, we shall 
explain more precisely how the general algorithm outlined above applies to the d = 1 RBlM 
and in particular how we have implemented it numerically. 

It is simpler to consider the dynamics of the domain walls (interfaces) rather than the 
dynamics of the individual spins. The interfaces lie on the dual lattice to the spins and have 
a creation energy equivalent to the strength of the bond that they break. We can therefore 
thiik of the bonds as defining a energy surface on which the interfaces move. Because of 
the disorder, this surface has many local minima. 

After a few steps of normal Glauber dynamics the interfaces will become stuck in these 
local minima To implement our algorithm we take each interface in tum and compute the 
first position to the left and to the right which has a lower energy, i.e. which is the site 
of a weaker bond and which is also a local minimum. Transitions to states with a higher 
energy need not be considered because the energy barrier for the retum to the original state 
is necessarily lower than the barrier to the high energy state, so for T -+ 0 the system 
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spends a negligible fraction of time in the high energy state. We next find the largest bond 
between the interface site and the target site. The difference between this bond and the 
bond on which the interface sits is the energy barrier for moving the interface to the new 
site. Having evaluated the energy barriers for the movement of all the interfaces, we find 
the smallest one and move the corresponding interface to its new position. If this site is 
already occupied by an interface, then both interfaces are eliminated from the system. Note 
that there cannot be any interfaces between as they would have already been moved due to 
their smaller energy barriers. 

The size of the energy barrier that can be jumped by an interface defines a time scale. 
The larger the barrier, the longer we expect to wait before the interface jumps over i t  At a 
particular stage of the ordering process there will be a maximum barrier size that has been 
jumped by any interface. Because our algorithm relies on the temperature being very low, 
the time scale associated with this barrier will be very much greater than that associated 
with the next largest barrier so we should therefore regard all processes that require the 
jumping of barriers less than the maximum jumped so far as instantaneous on this time 
scale. When we wish to observe the state of the system, say to calculate the correlation 
function, we therefore ensure that all processes requiring the jumping of barriers less than 
the current maximum are completed. 

We have ignored the effects of interface creation in this procedure. At the earliest 
stages this is not a problem, because to create an interface requires the breaking of two 
bonds, which will be a higher energy cost than that needed to move an interface, which 
involves only a change in which bonds are broken. At late stages, however, the size of the 
energy barriers to interface motion will have increased to the point where the production 
of interfaces is less costly energetically than the jumping of the barriers. On the time scale 
required to jump a barrier, therefore, there will be many interface pairs created. These 
new interfaces have no effect on the domain structure, however, because they cannot jump 
any of the large remaining barriers. They are therefore confined in pairs to the regions 
between the barriers and quickly annihilate with one another. The fraction of time in a true 
Monte Carlo study that these interfaces would be present is negligible and therefore their 
effect on the the measured values of the correlation functions can be ignored. 

Numerical implementation of the above procedure is straightforward. Starting from a 
random spin configuration, we mn a normal Monte Carlo simulation, based on Glauber 
dynamics at T = 0, until the entire set of spins is frozen. Given this configuration of spins, 
we then start our algorithm as defined above. We have mn simulations for a variety of 
random bond distributions. Figure 1 shows the correlation function found for a power-law 
distribution of bonds defined by the probability density P ( J )  = (a - I)J-aO(J - I) ,  where 
O ( x )  is the step function, along with the analytical form derived below. We have included 
data from a single time and only for the case a = 1.3. Data taken at other times and 
from runs using different values of a all lie on the same curve however. Figure 2 shows 
the correlation function found when the distribution of bonds is uniform. Because we are 
working in d = I we are able to use large lattice sizes (N = I@) which eliminates any 
finite size effects. We are also able to reach rather large domain sizes (L - ZOO) and 
hence we are confident that the system has reached the asymptotic scaling regime. The data 
appear to scale well after the domain size exceeds about 50 for the broadest distributions 
although other distributions take longer to reach the scaling regime. It is interesting to 
note that the pure d = 1 Ising model with Glauber dynamics approaches the scaling limit 
considerably faster than this. The data for different power-law distributions of bonds and 
for an exponential distribution appear to give the same scaling function. We expect, in fact 
that all unbounded distributions of bonds will give this scaling function. We return to this 
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Fwre 2. Scaling function for the two-point conelation 
function of the d = 1 random-bond king model with 
a uniform distribution of bonds. The solid line is the 
anslytical prediction and the data pints come from a 
numerical simulation of 200 realizations of 16 spins. 
The data were taken when the average domain size was 
Lo = 200. 

Figure 1. Scaling function for the two-pint m l a t i o n  
funnion of the d = 1 random-bond king model with 
a power law distribution of bonds P ( J )  as defined 
in Ihe kxt with a = 1.3. The solid line is the 
analytical prediction and the data points mme &om a 
numerical simuldon of 200 realizations of IO5 spins. 
The data were raken when the average domain size was 
Lo = 200. The da!a for other values of Lo and a, as 
well as lhe d a h  fM an exponential distribution of bonds, 
lie on h e  same curve. 

contention below. 
We now turn to the calculation of the two-point correlation function, firstly in the case 

where the bonds come from an unbounded distribution, and then for the case where the 
distribution is uniform. 

4. Calculation of the correlation function 

4.1. Unbounded distribution of bonds 

When the distribution of bonds is unbounded we can make a useful simplification of the 
problem. The size of an energy banier depends on the difference between the bond which 
an interface breaks and the largest bond between this bond and the nearest weaker bond. 
For a distribution of bonds with an unbounded tail, the variation in the size of the large 
bond i s  the dominant factor in deciding the energy barrier because in a large domain the 
smallest bond tends to be very close to the minimum of the bond distribution. We can 
therefore ignore the distribution of the small bonds and concentrate on the- locations of 
the large bonds. We will justify this simplification below when what we need to assume 
becomes clearer. 

Consider the structure of the domains at late times. The maximum energy barrier that 
has been jumped will be large, hence the number of bonds sufficiently strong to be barriers 
to interface movement will be small. Interfaces in a region between two of these bonds will 
have been free to move provided these bonds are not broken. These interfaces consequently 
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will have annihilated with each other until the number remaining is either zero or one 
depending on the initial number of interfaces in the region. If the initial state of each spin 
is random, corresponding to infinite temperature, the probability of finding an interface at a 
given site is i, so the probability of an even or odd number of interfaces in a given region 
is also f .  From this information we can deduce the structure of the spin configuration as 
follows: The spatial distribution of bonds sufficiently strong to form a banier is a Poisson 
distribution because the occurrence of these bonds is a rare event. Between any two strong 
bonds there is an interface with probability f which. if present, lies predominantly on the 
smallest bond, the expected position of which is uniformly distributed between the bonds. 
These observations reduce the calculation of the two-point correlation function, or indeed 
other correlation functions, to a combinatorial problem which can be solved exactly. 

To calculate the two-point correlation function we take two points at a given separation 
and average over all realizations of initial conditions and disorder. This calculation can 
be further simplified by the following observation. Consider the situation where the points 
are separated by a region containing two strong bonds (by strong bonds we mean bonds 
sufficiently large to create a banier to interface motion). Between these bonds there is 
an interface with probability i. This configuration consequently gives no contribution to 
the correlation function, because, when we average over initial conditions, we give equal 
weight to the configurations containing an interface between the large bonds and those 
that do not. These configurations give opposite contributions and therefore cancel. This 
cancelation occurs whenever there is the possibility of an interface between the points. We 
therefore define a potential interface (PI) to be a bond which, when the initial conditions 
are averaged out, is broken by an interface with probability 1. Any configuration where 
the points are separated by a PI gives no contribution to the correlation function, so the 
correlation function is simply the probability that there is no PI between the two points. 

(8) 

a I 

(b) 
0 0 

a C 1% b 
* 4- + . 

Figure 3. (U), (b) Configurations convibuting to the two-point correlation function for the 
RBlM with an unbounded dbvibulion of bonds. The large dots represent the positions of the 
smng bonds and Ihe mows the position of the points for which Ihe correlation function is lo 
be dculated. See the text for details. 

Let us first consider the situation where the points have no strong bonds between them. 
The points lie in a region between two strong bonds as shown in figure 3(a). The PI 
associated with the strong bonds is located at the smallest bond between them, the position 
of which is uniformly distributed. To calculate the contribution to the correlation function 
from this configuration we sum over all positions of the strong bonds that place them outside 
the test points and include two factors in the sum: One for the probability of finding the 
strong bonds in these positions and one for the probability that the PI, i.e. the weakest bond, 
is not between the test points. In the scaling limit, the domain size is very much gnater 
than the lattice spacing and so we can treat the model in the continuum limit. If we define 
the probability of finding a strong bond in an infinitesimal range of size da to be fsda then 
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the probability of the strong bond configuration shown in figure 3(a) is, from elementary 
probability theory, P;exp(-&(r + a + b))dadb. The probability that the PI lies outside 
the test points is (a + b)/(a + b + r ) .  The contribution to the correlation function from this 
configuration is therefore 

The contribution from the situation in which there is one strong bond between the test points 
can be calculated in the same manner, We need to sum over all positions the strong bond 
between the points can take and include a factor that requires both PIS to lie outside the 
points (see figure 3(b)). This gives the expression 

' abexp(-Ps(r + a  + 6) )  pg~mdalmdb~ dc ( a + c ) ( b + r  - c )  ' 

We now turn to the evaluation of the integrals. If the rescaling c' = rc is made in the 
c integral in (2) then r and fs occur only in the combination r fs and hence the waling 
limit is defined by r + 00, Ps + 0 with rPs = 2r arbitrary. The average separation 
of strong bonds is 1/Ps as their positions come from a Poisson distribution hence the 
average separation of interfaces is 2/ PS which is the same as the domain scale LO. It 
follows therefore that x = r/Lo. It is more convenient, however, to calculate the two- 
point correlation function in the form C(rPs) = C(x/2)  rather than C(x) .  Normally the 
comparison of theoretical and simulation results requires a free parameter to be introduced 
because the definitions of the characteristic length scale differ. We can eliminate fs in 
favour of LO, however, and hence compare directly with the numerical simulations. 

Taking the scaling limit in the above expressions gives 

(3 )  
To simplify this expression we write the denominators as integrals of exponentials which 
gives 

C(x/Z) = lmda lm db lmdu [xz(a + b) exp(-(u + x)(a + b + 1)) 

(4) 
1 1 

f- i m d u l  dcx3abexp(-x(a + h +  1) - u(a + c)  - u(b+ 1 -c)) . 

After evaluating the integrals over a, b and c we have 

Using the identity 
m du 1 - - -1  +-In(:) 1 1 (x  +U)% - U) x(x  + U) ( x  + U)* 

gives, after a little manipulation, the single integral 

C ( x ) = ~ ' d u 2 v Z e x p ( - ~ ) l n ( - - j L )  1 - U  
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which is our final form for the correlation function. The same expression can also be derived 
without using the continuum form of the model, i.e. with sums over lattice positions rather 
than integrals. In this case, however, there are extra terms which only become zero in 
the scaling limit. We have evaluate the integral in equation (7) numerically. As can be 
seen from figure I ,  the fit to the simulation data is excellent. For small x expanding the 
exponential in equation (7) gives C(x) = 1 - 2r + 0 ( x 3 ) .  In fact, we can show directly 
that the small distance behaviour of the correlation function must have this form. Consider 
two-points separated by r spins. If Pf is the probability of finding an interface at a given 
site then for small f i  the probability of finding an interface between the two points is P1r 
and so the correlation function for these points is C = 1 -2Plr. However, the mean domain 
length is Lo = l / f i  and so C = 1 -2r/Lo = 1 -2r  for smallx. 

To derive equation (7) we assumed that large bonds would form barrim to interface 
movemeni irrespective of the size of the bonds between them. We believe that this 
assumption is correct for any unbounded distribution of bonds with a sufficiently broad 
tail. In the appendix we present an example calculation showing that this is indeed the case 
for an exponential distribution of bonds in the limit Lo -+ 00. For power-law distributions, 
as we note in the appendix, the broader tail should ensure our treatment is valid. 

We have used values of a = 1.3,5.0 and 10.0 as well as an exponential distribution in 
our simulations which all give excellent agreement with the calculated correlation function. 
This suggests that all distributions of bonds which have a probability density function non- 
zero at the smallest bond and unbounded from above have the same two-point correlation 
function. For a uniform distribution of bonds the situation is completely different, however, 
as the role of the minimum bond is as important as that of the large bonds. We now tum our 
attention to the calculation of the two-point correlation function for this bond distribution. 

R E Blundell and A J Bray 

42 .  Uniform distribution of bonds 

We now repeat the calculation for a uniform distribution of bonds. The idea is essentially 
the same as above in that we calculate the probability that there is no PI between two sites 
at a random location in the system separated by r spins. To do this, however, is rather more 
difficult as we must look at the differences between bonds instead of simply the largest 
bonds. 

For the purposes of our algorithm the bonds can be taken to lie in (0, I) as only 
differences between bonds are relevant and changing the width of the distribution is 
equivalent to changing the temperature. 

Jd" 

Figure 4. The configuration determining the mean domain length in lhe RBIM with a uniform 
distribution of bonds. The symbols are explained in the text. 

We start by calculating the average domain scale LO. Consider the situation shown in 
figure 4. A = I - E  is the maximum energy barrier that has been jumped J ,  and 52 are the 
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first bonds to the left and right respectiveIy of J d n  with a value greater than Jmin + A. For 
a PI to be at the site labelled by Jme we require J,,,h c E, J l  - J d  > A and Jz - Jmin > A. 
Summing over all lengths n and m and integrating over all possible values of J I . J ~  and 
Jme that are allowed by the above restrictions gives us the probability of a PI at a given 
site. In the scaling limit, A is very close to 1, so factors of A, A', etc, can be ignored. We 
therefore obtain the expression 

- 
...... .......... ./' *,...- 

_...* ...... .. ._.. .... ...... ..... .... ...... .... ..... - ...... I ,  

which, on evaluation of the integrals and sums, gives (1 - A)/3. The probability of finding 
an interface at a PI is t so the average domain length is 

6 
1 - A  

L o = - .  (9) 

There are three types of configuration which contribute to C(x) in the scaling limit. We 
represent these schematically by the three diagmms shown in figure 5. The vertical scale 
corresponds to the bond strength and the horizontal scale to position. The points at the 
edge of the diagrams are the test points. separated by r spins, for which we are calculating 
the correlation function. Dotted lines denote regions of bonds which contain no barriers to 
interface motion; straight lines with an arrow represent regions where there are. barriers but 
only in the direction opposite to the arrow. One can convince oneself after a little thought 
that all other diagrams containing a PI between the test points, have zero contribution in 

I 

. 
... .... .... .... ... ..... ...... ..... ... .... ... ..... 

..... ..... 

... .... 
... .... 

I 

%_._ 

-. 

a b 0 

Figure 5. The three configurations contributing to the m l a l i o n  function for the RBlM with a 
uniform dislribution of bonds. The symbols are explained in the texr 
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the scaling limit or are already included as a subset of the diagrams in figure 5. These 
three diagrams therefore include all the necessary bond configurations. We will explain the 
diagrams in more detail below as we evaluate their contributions to C(x). 

The first diagram represents the situation where there are no barriers to interface motion 
between the test points. If Jmd is the smallest of the bonds in this region then Jmh > E 
implies there are no PIS. For Jmin < e there could be a PI between the test points. We 
require that there be a bond smaller than Jmin outside the spins and that the largest bond 
between this and the bond of size Jmh is less than Jmin + A. This ensures that an interface 
breaking the Jmin bond is free to move to the smaller bond outside the test points. 

The first case is simple. We integrate over all values of J , "  and sum over all positions 
the least b n d  could occupy to get 

R E Blundell and A J Bray 

l' dJmi, r ( l  - Jmin)'-' = (1 - E)' 

which in the scaling limit is exp(-rc) = exp(-z) where z = re = r(1 -A) = 6r/L0 = 6x. 
For the second case the condition that there is no larger bond than Jmb + A between 

Jmm and the first smaller bond to the right, say, has probability 

Jmin 

1-A' 2 anJmin = - 
"=O 

We require this situation on the left, the right or both sides of the test points which has 
probability 

1 -  I - -  ( 
hence we obtain the following expression for the contribution to the correlation function 

which becomes (2/3)z exp(-z) after evaluating the integrals and taking the scaling limit. 
The total contribution to C(x) from the first diagram is therefore 

CI(Z) = ( I  +22/3)exp(-z). ( 1 4  

We proceed in a similar fashion with the second diagram. The bond labelled JI  is the 
largest bond between the test points and J? is the smallest. All bonds to the left of 51 are 
smaller than J I  but not so small so as to create a barrier. Similarly, all the bonds to the 
right of JZ are larger then J I  but not so large so as to create a barrier. The only bond that 
could possibly be a PI is Jz. To ensure that it is not we require, as before, that there is a 
bond less than JZ to the right of the right test point with the bonds between this bond and 
Jz all less than Jz + A. This has probability Jz/(l - A) as in equation (1 I). The bonds to 
the right of JZ and the left of J I  give a factor of A'-". 

To complete the calculation we require the probability of the straight arrowed line in 
the second diagram. This line represents the situation where there are a bonds between two 
bonds of strength J\ and JI which satisfy J ,  - 52 > A. In this region there are no barriers 
to left-right interface motion but there are an arbitrary number of right-left barriers present. 
To calculate the probability of such a configuration of bonds consider the situation shown 
in figure 6,  which shows a possible bond configuration enclosed by the bonds 51 and Jz. 



A soluble model of domain growth 5247 

We start by considering the bond strength 10 = J I  - A. We find the first bond to the 
right that is smaller than l o ,  11, say, at a distance al from JI. We then find the first smaller 
bond to the right of It and continue this process until we reach the other side of the diagram. 
The last smaller bond we find, excluding Jz.  is 1. at position a,. By construction, Jz is 
smaller than In and is at location a.+l a.  Now if all bonds between li and li+] are less 
than li + A for 0 c i <: n + 1 then we see that the configuration generated cannot have any 
left-right barriers to interface motion. Futhermore, any configuration which does not have 
barriers to left-right interface motion can be constmcted using the above procedure. Finally, 
we observe that each set of distinct variables [ I f ,  ai J generates distinct bond configurations 
hence the set of all ( I ; ,  ai] covers all possible bond configurations that have no left-right 
barriers. To calculate the probability Pm of no left-right interface barriers we therefore take 
the probability of a particular configuration, such as the one in figure 6, sum over all values 
of n and integrate over all allowed values of li and ai. The probability density associated 
with figure 6 is simply A"-" fl;==, dl,da,. We therefore have 

Summing over n includes the possibility of any number of jumps. The resulting expression 
is 

where lo@) is the modified Bessel function. 
Using this expression we can now calculate the second diagram of figure 5. We integrate 

over all the allowed values of J I  and J z ,  integrate over all lengths a between J I  and 52 and 
include a factor r - a  for the possible positions of J1. This gives us the expression 
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which can be evaluated by rewriting the Bessel function as a series as in equation (15), 
evaluating the integrals and resumming the resulting expression. This gives, after a little 
algebra 
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where we have included an extra factor of 2 because the mirror image of diagram 2 gives 
the same contribution. 

The procedure to evaluate diagram 3 is identical. This time we include a factor of Pm 
for each of the mowed lines. We also include two factors of the form of equation (11), 
which arise from the conditions that interfaces at the bonds J I  and J3  must be free to move 
to smaller bonds outside the test points. We integrate over J1,Jz and 33 as well as the 
positions a,b and c . The resulting expression is 

where 

I = I ~ ( ~ J ; ~ ) I ~ ( ~ , / ~ Z @ G )  (20) 

which when we take the scaling h i t  we can write in the form 

where now 

I' = 1 0 ( 2 ~ ~ 1 0 ( 2 4 ~ ( 1  - b)Jz(I - J+?) . (22) 

This integral can then be computed numerically. Our resulting expression for the correlation 
function including all the above contributions and replacing z by 6x is therefore 

C ( 4  = I A I ( ~ )  + A Z ( X ) J ~ X P ( - ~ ~ )  

AI(x) = I + 4x + 12x&Ii(Z&) - ( 6 ~ ) ~  - 72x2 

A'= h ( d w I o ( d 2 4 ( 1  -b)c( l  - J3)Jzx). 

Figure 2 shows this function and the data from the numerical simulation. Once again, 
the agreement is excellent In the scaling regime, the bonds that control interface motion 
are those very close to 0 and I .  We expect, therefore, that any bond distribution which is 
the same as the uniform distribution close to these values should give the same correlation 
function. Simulations with such bond distributions do, to within statistical errors, give 
correlation functions fitted by equation (U). A generalisation to arbitrary non-uniform 
distributions, however, would be difficult, mainly due to the problems in calculating PLR. 

5. The autocorrelation function 

Another quantity of interest in the study of phase ordering dynamics is the autocorrelation 
function COO, t') = (S(i, r )S( i .  t')) where S ( i ,  I) is the value of the spin at site i and time 
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t. This is expected to have the scaling form C&, f ' )  = g(L( t ' ) /L ( f ) )  for large L( t )  and 
L(t') with f' > f .  As noted above, it is convenient to use the mean domain length to define 
the time scale. Hence we look at the quantity A(L1. Lz) = h ( L * / L t ) .  

For the two-point correlation function we were able to deduce the domain structure for 
large values of Lo and hence the calculation of f ( x )  was reduced essentially to a problem 
in combinatorics, For a very broad unbounded distribution of random bonds we can follow 
the same procedure for the autocorrelation function. Firstly, consider the system when it 
has evolved to a stage where the mean domain scale is L J .  The strong bonds, say those 
with strengths greater than J I ,  occur with probability fl and confine the interfaces hence 
there is either zero or one interfaces between each pair of strong bonds. Let us refer to this 
state as the initial state. At a later stage of domain growth, defined by the length scale Lz, 
the strong bond strength Jz and strong bond probability Pz, a fraction of the bonds which 
used to be nominated as strong bonds will no longer be so. Hence interfaces previously 
confined by them will be free to annihilate or move to positions with a lower energy. We 
refer to this state as the hal state. 

- - 0 - - - 0 
A B C D 

Rigwe 7. Configuration of smng bonds contributing to Ihe autocorrelation function in Ihe 
RBlM with an unbounded distribution of bonds. See the text for details. 

To calculate the autocorrelation function we consider a region of N bonds between 
two bonds greater than 52 with all the intervening bonds less than J2. For all the possible 
configurations of bonds and positions of interfaces in the initial state, the domain sttucture 
of the final state can be inferred directly. If the initial number of interfaces is even then the 
final state will contain no interfaces whereas if the initial number is odd then there will be a 
single interface in the final state occupying the weakest of the N bonds. Now, consider the 
situation shown in figure 7. The bonds A and D are strong bonds in the final state, while 
the other strong bonds in between are only nominated as strong bonds in the initial state. 
The bond B is the first strong bond (in the initial state) to the right of A and the bond C is 
the first strong bond to the left of D. We now claim that after averaging over all positions 
B and C can occupy and over all possible initial interface positions the region BC gives no 
contribution to the,autocorrelation function. To see why this is so consider a given set of 
bonds in AD. The final configuration is dependent only on the parity of the initial number 
of interfaces. Two initial configurations differing by the parity of the number of interfaces 
in AB and the parity of the number of interfaces in CD will therefore evolve to the same 
final configuration. Each of the spins in the region BC in one of these initial configurations 
is opposite in sign to the same spin in the other configuration, so the contributions BC gives 
to the autocorrelation function from the two configurations cancel. All initial configurations 
can be paired in this way so the net contribution from BC is zero. 

The entire contribution to the autocorrelation function comes from the two regions AB 
and CD in figure 7. Consider for the moment just the region AB, as the contribution from 
CD is, by symmetry, the same. Suppose that in the final state there is no interface in AB. If 
there is alsono interface in AB initially, then the contribution to the autocorrelation function 
from AB is the number of spins contained in it, i.e. a. Finally, if there is an interface in AB 
initially, however, then there is no net contribution because the interface is equally likely 
to lie anywhere in AB. Similarly, if there is an interface in AB in the final state but not in 
the initial state then there is no contribution to the autocorrelation function. If there is an 
interface in AB in both the initial and final states, then it must be at the same place in AB 
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(the weakest bond) and so the connibution to the autocorrelation function is the number of 
spins in AB again. Regardless of the final state, then, the contribution from AB is zero or 
a depending upon whether there is an interface in AB initially. The average contribution 
from AB and CD together is therefore (a + b)/2. 

The value of the autocorrelation function in a region such as that shown in figure 7 is 
(a + b) / (2N) .  The probability density of finding such a region is simply P i  exp(-PM(a + 
b)) ,  where PM is the probability density of finding a bond J > JI given that J < Jz.  It can 
easily be shown, using elementary probability theory, that PM = (PI - Pz)/(l - Pz). In 
the scaling limit, PI -P 0, Pz + 0, Pt/Pz arbitrary, P M  = PI - Pz. The expected value of 
the autocorrelation function from a region of N spins bounded by two bonds greater than 
52 and with at least two bonds greater than 51 between these is therefore 
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a + b  
A I  =iNdai db P$exp(-Pda+b))- 2 N  ' 

N--n 

In addition to the configurations of the type shown in figure 7, there are two other 
configurations which contribute to the autocorrelation function. Firstly, there could be no 
strong bonds within the N spins, in which case the autocorrelation function is 1 within this 
region, hence the contribution is 

A2 = eXp(-NPM). (25) 

Secondly there could be a single strong bond, in which case the autocorrelation function 
can be evaluated exactly as above and takes the value 

The integrals in equations (24) and (26) can be evaluated straightforwardly and one finds 
the total expected contribution to the autocorrelation function A r  to be 

To calculate the full autocomlation function we integrate over all N and weight the 
contribution from a region of length N by the probability of finding N bonds less than 
Jz separating two bonds greater than JZ and by a factor of N, which is included because the 
region contains N spins, each of which has an equal weight in the autocorrelation function. 
The resulting expression is therefore 

A(P1, Pz) = l m d N  NP:exp(-NPz)Ar (28) 

which, after evaluating the integrals and replacing Pm with PI - Pz = 2 / L 1 - 2 / L z ,  becomes 

We have also measured this quantity in OUT simulations. We used a power-law 
distribution of bonds given by the probability density function P ( J )  = (ct - I)J-* where J 
lies in the interval ( 1 , ~ ) .  The data are presented in figure 8, where we see that agreement 
with the theory is excellent for 01 = 1.2. For larger values of ct, however, the numerically 
determined scaling function moves away from the analytical form, in contrast to the situation 
for the two-point correlation function w h m  all values of ct gave the same. scaling function. 
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In the case. of the autocorrelation function we can see that the simplifying assumption of 
considering only the strong bonds and ignoring fluctuations in the size of the minimum bond 
between them is valid only for very broad distributions of bonds, i.e. for OL + 1. This is 
because we have introduced two sets of strong bonds so that bonds belonging to the weaker 
set are automatically less than a given value, hence more likely to be effected by a large 
minimum bond. 

The autocorrelation function has also been calculated for the d = 1 Glauber model [4]. 
In the scaling regime, at zero temperature, one finds 

For this model, r - t ' p  and so the autocorrelation function has the same tail behaviour 
A(L1,  L z )  - L1IL.z. The value of the exponent A which characterizes the tail behaviour 
[IO] is therefore not affected by the disorder, provided we write the autocorrelation function 
in terms of the lengths LI and Lz rather than the times ti and tz 

We have also determined numerically the autocorrelation function for a uniform 
distribution of bonds. In this case the scaling function is different again, as it was for 
the two-point correlation function. 

Nx) 

0.2 0.41 
01 

Figure 8. Scaling fundon for Lhe autocnrrelation 
function of the one-dimensional random-bond king 
model with a power-law distribution of bonds as defined 
in the text. The solid line is the analytical prediction 
and the data points come f" a numerical simulation 
of 50 realizations of los spins. The data were taken 
using an initial domain size LI = ZOO. The circles 

2 3 4 5 6 me the data for 01 = 1.2 and the squares the data For 
X-LJh =3.0. 

6. Discussion and summary 

We have introduced a model of domain growth in disordered systems which can be used 
to find exact forms for the two-point correlation function and autocorrelation function of 
the d = 1 random-bond king model for a range of disorder types. In these cases the 
dynamic scaling hypothesis has been explicitly demonstrated to hold, Systems with different 
unbounded distributions of bonds a~ found to belong to the same universality class, to 
the extent that the two-point correlation function is the same, but systems with uniform 
distribution of bonds belong to a different class. The autocorrelation function has been 
calculated for the limit of a very broad power-law distribution of bonds and has the same 
value of the exponent A as the pure Glauber model. Other distributions of bonds give 
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different scaling functions for this correlation function however. In all cases the form of 
the correlation function is found to differ from that of the pure d = 1 king model. 

So far we have not discussed how the characteristic scale L ( t )  (defined as, say, the 
mean domain length LO) depends on the time t of an underlying microscopic dynamics. 
The connection is simply made by equating the elapsed time f to the Arrhenius activation 
time for the dominant activation barriers A at length scale LO. i.e. t - 7exp[A(Lo)/TJ, 
where 7 is a microscopic time scale. Consider, for example, an unbounded P ( J ) .  As usual, 
LO = 2/Ps, where Ps is the fraction of 'strong bonds'. For large LO, the barrier A&) is 
dominated by the strength Js of the weakest strong bonds, defined by PS = l z d J  P ( J ) .  
Thus A Y JS 
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T In(t/r) gives, ignoring constants of order unity, 

As explicit examples, we consider distributions with exponential and power-law tails, 
P ( J )  ,., exp(-J/Jo), and P ( J )  - J-* respectively, for J + W. These give LO - tTIJa 
and LO - respectively. For the uniform distribution of section 4.2, (9) gives 
LO - [l - A]-' - [ I  - T ln(t/r)]-'.  While this formally gives an LO which diverges in 
finite time, one must remember that all our results are limited to the time regime where 
LO < e(T), in which f ( T )  is the equilibrium correlation length at temperature T. Otherwise 
one cannot ignore the effect of thermally activated domain walls. 

For d > I ,  domain growth in the king model is driven by the curvatllre of the domain 
walls. Because the introduction of disorder roughens these walls only as W - L t ,  where 
W is the typical fluctuation size induced in a domain wall of length L and 5 is an exponent 
less than I for all d =. I ,  on sufficiently large length scales the domain walls appear smooth. 
It is expected, therefore, that the two-point correlation function should not be effected by 
the introduction of disorder for d z 1 [lo]. For d = 1, however, there is no curvature to 
drive the domain walls, so it is quite possible that the disorder may have some effect on 
the correlation functions, as indeed we have found in our model. 

It should also be possible to calculate the two-point correlation function for the d = 1 
random-bond Ising model with a conserved order parameter, or for the random field king 
model, within the framework of our model. Unfortunately, however, a generalization of the 
model to d greater than 1, where domain wall curvature would become impomt, does not 
seem possible. 
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Appendix 

In this appendix we consider a configuration in which the minimum bond between two 
strong bonds, i.e. bonds greater than 4. is sufficiently large to allow an interface to pass 
over one of these bonds and show that for an unbounded distribution the probability of this 
configuration becomes zero in the limit of large domain scales. 

Let us for simplicity take an exponential distribution of bonds. The probability density 
function is 
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where J lies in the interval (0, CO). The probability of finding a strong bond at a given site 
is therefore 

where Js is the minimum size of a strong bond. Suppose we select a site at random in the 
system at a time when the mean domain length is LO. Denote by a the number of weak 
bonds to the left of this site before a strong bond of size 51 and by b the number of weak 
bonds to the right before another strong bond of size Jz .  If the smallest of the weak bonds 
is of size Jmh then the strong bonds fail to confine an interface on this bond if either J I  or 
Jz is less than JS + 

The probability density for this configuration of bonds, correct to leading order in Ps, 
is 

= 2(a + b)apse-aJd[e-aJmI,' - e-uJs]'+h-l[e-=Js - e-aUs+Jme) 1 (-43) 

where P(J )  is given by equation (Al). We now integrate over all possible values of U ,  

h and Jmh to find the total probability Pr of such a configuration. Using (A21 and the 
substitution K = we have 

- (K - PS)"+b] 

We therefore conclude that in the scaling limit, where PS -+ 00, there are a negligible 
number of such regions and hence they do not alter the form of the two-point correlation 
function. 

For bond probability density functions such as the exponential distribution or a power- 
law distribution, Jmin will be very close the the minimum possible bond and hence insensitive 
to the precise form of the distribution. The arguments given above therefore depend only on 
the probability that a strong bond lies in the interval JS to Js t 6, where 6 is the difference 
between J,,,in and the minimum possible bond. For a power-law distribution defined by the 
probability density function P ( J )  = (a - 1)J'6'(J - 1) this probability is therefore given 
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by 

for large Js. We see that for decreasing values of a, which correspond to increasingly 
h a d  tails, the probability for a bond to Lie in (Js .  Js + 6 )  gets smaller and hence OUT 
approximation should be better at small values of LO. Indeed, we have observed in ow 
numerical simulations that for smaller values of (Y the scaling function is approached more 
rapidly. 
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